Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Precis Chem ; 2(3): 103-111, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38550915

RESUMEN

Electrochemical glycerol oxidation (EGO) emerges as a promising route to valorize glycerol, an underutilized byproduct from biodiesel production, into value-added chemicals. This study employed three types of gold (Au) nanocrystals with controlled shapes to elucidate the facet-dependent electrocatalytic behavior in EGO. Octahedral, rhombic dodecahedral, and cubic Au nanocrystals with {111}, {110}, and {100} facets, respectively, were precisely synthesized with uniform size and shape. Rhombic dodecahedra exhibited the lowest onset potential for EGO due to facile AuOH formation, while octahedra showed enhanced electrochemical activity for glycerol oxidation and resistance to poisoning. In-situ FTIR analysis revealed that Au {111} surfaces selectively favored C2 products, whereas Au {100} surfaces promoted C3 product formation, highlighting the significant effect of facet orientation on EGO performance and informing catalyst design.

2.
J Am Chem Soc ; 144(35): 16131-16138, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36007154

RESUMEN

Single-atom catalysts (SACs) of non-precious transition metals (TMs) often show unique electrochemical performance, including the electrochemical carbon dioxide reduction reaction (CO2RR). However, the inhomogeneity in their structures makes it difficult to directly compare SACs of different TM for their CO2RR activity, selectivity, and reaction mechanisms. In this study, the comparison of isolated TMs (Fe, Co, Ni, Cu, and Zn) is systematically investigated using a series of crystalline molecular catalysts, namely TM-coordinated phthalocyanines (TM-Pcs), to directly compare the intrinsic role of the TMs with identical local coordination environments on the CO2RR performance. The combined experimental measurements, in situ characterization, and density functional theory calculations of TM-Pc catalysts reveal a TM-dependent CO2RR activity and selectivity, with the free energy difference of ΔG(*HOCO) - ΔG(*CO) being identified as a descriptor for predicting the CO2RR performance.

3.
Proc Natl Acad Sci U S A ; 119(11): e2112109119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35263231

RESUMEN

SignificanceDirect ethanol fuel cells are attracting growing attention as portable power sources due to their advantages such as higher mass-energy density than hydrogen and less toxicity than methanol. However, it is challenging to achieve the complete electrooxidation to generate 12 electrons per ethanol, resulting in a low fuel utilization efficiency. This manuscript reports the complete ethanol electrooxidation by engineering efficient catalysts via single-atom modification. The combined electrochemical measurements, in situ characterization, and density functional theory calculations unravel synergistic effects of single Rh atoms and Pt nanocubes and identify reaction pathways leading to the selective C-C bond cleavage to oxidize ethanol to CO2. This study provides a unique single-atom approach to tune the activity and selectivity toward complicated electrocatalytic reactions.

4.
JACS Au ; 2(1): 214-222, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35098238

RESUMEN

The electrochemical carbon dioxide reduction reaction (CO2RR) using copper (Cu)-based catalysts has received significant attention mainly because Cu is an element capable of producing hydrocarbons and oxygenates. One possible way to control the CO2RR performance at the electrode interface is by modifying catalysts with specific functional groups of different polymeric binders, which are necessary components in the process of electrode fabrication. However, the modification effect of the key functional groups on the CO2RR activity and selectivity is poorly understood over Cu-based catalysts. In this work, the role of functional groups (e.g., -COOH and -CF2 groups) in hydrophilic and hydrophobic polymeric binders on the CO2RR of Cu-based catalysts is investigated using a combination of electrochemical measurements, in situ characterization, and density functional theory (DFT) calculations. DFT results reveal that functional groups influence the binding energies of key intermediates involved in both CO2RR and the competing hydrogen evolution reaction, consistent with experimental observation of binder-dependent product distributions among formic acid, CO, CH4, and H2. This study provides a fundamental understanding that the selection of desired polymeric binders is a useful strategy for tuning the CO2RR activity and selectivity.

5.
Small ; 16(49): e2005305, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33205618

RESUMEN

The electrochemical CO2 reduction reaction (CO2 RR) to syngas represents a promising solution to mitigate CO2 emissions and manufacture value-added chemicals. Palladium (Pd) has been identified as a potential candidate for syngas production via CO2 RR due to its transformation to Pd hydride under CO2 RR conditions, however, the pre-hydridized effect on the catalytic properties of Pd-based electrocatalysts has not been investigated. Herein, pre-hydridized Pd nanocubes (PdH0.40 ) supported on carbon black (PdH0.40 NCs/C) are directly prepared from a chemical reduction method. Compared with Pd nanocubes (Pd NCs/C), PdH0.40 NCs/C presented an enhanced CO2 RR performance due to its less cathodic phase transformation revealed by the in situ X-ray absorption spectroscopy. Density functional theory calculations revealed different binding energies of key reaction intermediates on PdH0.40 NCs/C and Pd NCs/C. Study of the size effect further suggests that NCs of smaller sizes show higher activity due to their more abundant active sites (edge and corner sites) for CO2 RR. The pre-hydridization and reduced NC size together lead to significantly improved activity and selectivity of CO2 RR.

6.
Nat Commun ; 11(1): 2178, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358548

RESUMEN

Electrochemical synthesis of H2O2 through a selective two-electron (2e-) oxygen reduction reaction (ORR) is an attractive alternative to the industrial anthraquinone oxidation method, as it allows decentralized H2O2 production. Herein, we report that the synergistic interaction between partially oxidized palladium (Pdδ+) and oxygen-functionalized carbon can promote 2e- ORR in acidic electrolytes. An electrocatalyst synthesized by solution deposition of amorphous Pdδ+ clusters (Pd3δ+ and Pd4δ+) onto mildly oxidized carbon nanotubes (Pdδ+-OCNT) shows nearly 100% selectivity toward H2O2 and a positive shift of ORR onset potential by ~320 mV compared with the OCNT substrate. A high mass activity (1.946 A mg-1 at 0.45 V) of Pdδ+-OCNT is achieved. Extended X-ray absorption fine structure characterization and density functional theory calculations suggest that the interaction between Pd clusters and the nearby oxygen-containing functional groups is key for the high selectivity and activity for 2e- ORR.

7.
Nano Lett ; 17(6): 3926-3931, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28493711

RESUMEN

Octahedral Pt alloy nanocrystals (NCs) have shown excellent activities as electrocatalysts toward oxygen reduction reaction (ORR). As the activity and stability of NCs are highly dependent on their structure and the elemental distribution, it is of great importance to understand the formation mechanism of octahedral NCs and to rationally synthesize shape-controlled alloy catalysts with optimized ORR activity and stability. However, the factors controlling the structural and compositional evolution during the synthesis have not been well understood yet. Here, we systematically investigated the structure and composition evolution pathways of Pt-Ni octahedra synthesized with the assistance of W(CO)6 and revealed a unique core-shell structure consisting of a Pt core and a Pt-Ni alloy shell. Below 140 °C, sphere-like pure Pt NCs with the diameter of 3-4 nm first nucleated, followed by the isotropic growth of Pt-Ni alloy on the seeds at temperatures between 170 and 230 °C forming Pt@Pt-Ni core-shell octahedra with {111} facets. Owing to its unique structure, the Pt@Pt-Ni octahedra show an unparalleled stability during potential cycling, that is, no activity drop after 10 000 cycles between 0.6 and 1.0 V. This work proposes the Pt@Pt-Ni octahedra as a high profile electrocatalyst for ORR and reveals the structural and composition evolution pathways of Pt-based bimetallic NCs.

8.
Chem Rev ; 116(6): 3594-657, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26886420

RESUMEN

The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...